Automatic Feature Extraction and Indexing for Content-Based Visual Query
نویسندگان
چکیده
Content-based indexing and query has been considered as a powerful technique for accessing large visual information systems (databases and video servers). By extracting and indexing the visual contents of the images such as texture, color, and shape, users may search desired images by specifying the image contents directly. However, a practical and economical solution cannot afford extensive user involvement. This paper proposes an approach in which image processing technology is explored to the limit of its capability for automatic extraction and indexing of image features. We relax the criterion of image content recognition that concrete 3D objects can be successfully segmented from 2D images. Instead, we aim to index the prominent image regions with distinctive features only. By combining multiple modalities of useful signal features, we hope to characterize the prominent image objects efficiently and effectively. In order to further explore the maximum synergy between feature extraction and other image processing tasks required in image databases, we also propose to extract the visual features directly from the compressed images. For existing large image archives, decoding of compressed image data is hence not necessary. For new image database design, merging feature extraction intelligence into the compression algorithm has recently been recognized as an important issue for image processing research. We use texture, shape, and video scene change detections as examples in describing this compresseddomain approach. All the proposed research are being incorporated into practical applications in Columbia University’s Multimedia testbed.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملروشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا
In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....
متن کاملScene Segmentation and Image Feature Extraction for Video Indexing and Retrieval
We present a video analysis and indexing engine, that can perform fully automatic scene segmentation and feature extraction, in the context of a television archive, based on a library of image analysis functions and templates.
متن کاملExtracting Multi - Dimensional Signal Features for Content - Based Visual Query
Future large visual information systems (such as image databases and video servers) require effective and efficient methods for indexing, accessing, and manipulating images based on visual content. This paper focuses on automatic extraction of low-level visual features such as texture, color, and shape. Continuing our prior work in compressed video manipulation, we also propose to explore the p...
متن کاملAn Unsupervised Cluster-based Image Retrieval Algorithm using Relevance Feedback
Content-based image retrieval (CBIR) systems utilize low level query image feature as identifying similarity between a query image and the image database. Image contents are plays significant role for image retrieval. There are three fundamental bases for content-based image retrieval, i.e. visual feature extraction, multidimensional indexing, and retrieval system design. Each image has three c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995